Practical Approaches For Solving Lost Circulation Problems While Drilling – complete project material

[ad_1]

ABSTRACT

As the demand for petroleum resources increases, drilling of oil and gas wells are often carried out in challenging and hostile environments. Among the top ten drilling challenges facing the oil and gas industry today is the problem of lost circulation. Major progress has been made to understand this problem and how to combat it. However, most of the products and guidelines available for combating lost circulation are often biased towards advertisement for a particular service company. The purpose of this study is to develop practical guidelines that are general and not biased towards a particular service company product and which will also serve as a quick reference guide for lost circulation prevention and control at the well-site for drilling personnel.

 

CHAPTER 1

FORMULATION OF PROBLEM

1.1        INTRODUCTION

Lost circulation is a common drilling problem especially in highly permeable formations, depleted reservoirs, and fractured or cavernous formations. The range of lost circulation problems begin in the shallow, unconsolidated formations and extend into the well-consolidated formations that are fractured by the hydrostatic head imposed by the drilling mud (Moore, 1986). It can then be defined as the reduced or total absence of fluid flow up the formation-casing or casing-tubing annulus when fluid is pumped down the drill pipe or casing. The industry spends millions of dollars every year to combat lost circulation and its associated detrimental effects such as loss of rig time, stuck pipe, blow-outs, and less frequently, the abandonment of expensive wells. Two conditions are both necessary for lost circulation to occur down hole: 1) the pressure in the well bore must exceed the pore pressure and 2) there must be a flow pathway for the losses to occur (Osisanya, 2011). Sub-surface pathways that cause, or lead to, lost circulation can be broadly classified as follows:

Induced or created fractures (fast tripping or underground blow-outs) Cavernous formations (crevices and channels)

Unconsolidated or highly permeable formations

Natural fractures present in the rock formations (including non-sealing faults)

The rate of losses is indicative of the lost pathways and can also give the treatment method to be used to combat the losses. The severity of lost circulation can be grouped into the following categories (Abbas et al. 2004):

Seepage losses: up to 10 bbl/hr lost while circulating

Partial losses: 10 – 500 bbl/hr lost while circulating

Severe losses: more than 500 bbl/hr lost while circulating

Total losses: no fluid comes out of the annulus

Circulation may be lost even when fluid densities are within the customary safety-margin; less dense than the fracture density of the formation. Stopping circulation losses before they get out of control is crucial for safe and economically rewarding operations (Abbas et al. 2004). According to Ivan and Bruton (2003), “Deepwater drilling has brought loss circulation control to a more critical level as it involves narrow pore-pressure/fracture-gradient windows, cold drilling fluid temperatures, high equivalent circulating densities (ECDs), high cost-per-barrel of synthetic-based fluids (SBM) and a high cost for rig time/non-productive time (NPT).” The reduction of the fracture pressure gradient in the deeper water is mainly due to the low stress regime as a result of the reduction in the overburden pressure gradient. Also, drilling through sub-salt zones poses a challenge to the operator because of the problem of lost circulation encountered in these zones. These wells have shear zones above and below the salt formations and also narrow margins between the pore and fracture pressure and hence these wells tend to register severe losses in circulation.

1.2        LITERATURE REVIEW

Lost circulation is a broad subject and several studies and measures have been introduced in the industry to combat it. For example, Moore, (1986) noted that in shallow, unconsolidated formations where the drilling fluid may flow easily into the formation, the most common method used to combat lost circulation is to thicken the mud. This may be done in fresh water muds by adding flocculating agents such as lime or cement. He also stated that in areas such as below surface casing in normal-pressure formations where natural fractures are common, the most common method used to combat lost circulation is to drill without fluid returns to the surface. The purpose is to remove the generated cuttings from the hole and deposit them at the lost circulation zone. However, this practice requires large volumes of water and close supervision as there is the possibility of encountering high drill-string torque and drag.

Current research on lost circulation has been focused on the use of Lost Circulation Materials (LCMs), especially chemical formulations which have been proven to be more effective. Hamburger et al. (1983) of Exxon Production Research Company developed a Shear-thickening Fluid (STF) which was tested successfully in 10 different wells that experienced severe lost circulation. A STF is a multi-component system composed of water-swellable material (usually clay) dispersed in an oil-external emulsion. The emulsion consists of liquid oil, an oil-soluble surfactant, and aqueous-phase droplets containing dissolved polymer. At the low shear rates encountered while it is being pumped down the drill pipe, the fluid is a low-viscosity, pumpable liquid. Yet as it passes through the drill-bit nozzles, the resulting high shear rates cause the fluid to thicken irreversibly into a high strength viscous paste.

GET THE COMPLETE PROJECT»

Do you need help? Talk to us right now: (+234) 8111770269, 08111770269 (Call/WhatsApp). Email: projects@blazingprojects.com. Disclaimer: This PDF Material Content is Developed by the copyright owner to Serve as a RESEARCH GUIDE for Students to Conduct Academic Research. You are allowed to use the original PDF Research Material Guide you will receive in the following ways: 1. As a source for additional understanding of the project topic. 2. As a source for ideas for you own academic research work (if properly referenced). 3. For PROPER paraphrasing ( see your school definition of plagiarism and acceptable paraphrase). 4. Direct citing ( if referenced properly). Thank you so much for your respect for the authors copyright.

[ad_2]


Purchase Detail

Hello, we’re glad you stopped by, you can download the complete project materials to this project with Abstract, Chapters 1 – 5, References and Appendix (Questionaire, Charts, etc) for N4000 ($15) only, To pay with Paypal, Bitcoin or Ethereum; please click here to chat us up via Whatsapp.
You can also call 08111770269 or +2348059541956 to place an order or use the whatsapp button below to chat us up.
Bank details are stated below.

Bank: UBA
Account No: 1021412898
Account Name: Starnet Innovations Limited

The Blazingprojects Mobile App



Download and install the Blazingprojects Mobile App from Google Play to enjoy over 50,000 project topics and materials from 73 departments, completely offline (no internet needed) with the project topics updated Monthly, click here to install.

0/5 (0 Reviews)
Read Previous

A Detailed History Of African Philosophy – complete project material

Read Next

Implication Of The Cost Of End Of Life Care – complete project material

Need Help? Chat with us