Development Of Generalized Well Semi-Analytical Coning Models – complete project material


ABSTRACT

Oil deposits are often found in association with a communicating gas or water zone. The production of the oil often leads to the coning of water or gas. This dynamic interaction can be captured by a properly detailed reservoir simulation, which unfortunately may not always be practical. To bridge the gap, researchers over the years have developed both analytical and empirical methods of modelling gas and water coning in oil reservoir. The fundamental questions have always been: what is the critical rate of oil production; what is the breakthrough time if the critical rate is exceeded; and what is the post-breakthrough behaviour?

Using analytically derived line source vertical and horizontal well breakthrough time expressions, a method has been developed to estimate oil critical rate, breakthrough time and post-breakthrough trend for inclined wells. The Post-breakthrough prediction scheme was extended to vertical and horizontal wells. Simplified correlations have also been generated for the easy application of the method without the need of analyzing complex mathematical functions. Within the accuracy of the numerical simulation results, the breakthrough times for the inclined well were consistently and correctly predicted. Literature correlations and numerical simulation comparisons showed that the post-breakthrough production predictions tended to underpredict oil production, but the trends were much more consistent with simulation results than other correlations studied. To the best of the knowledge of the author, this is the first semi-analytical coning model of an inclined well, as well as, the first semi-analytical post-breakthrough trend prediction for vertical and horizontal wells.

 

Chapter One

INTRODUCTION AND PROBLEM DEFINITION

1.1 INTRODUCTION

Quite often, oil deposits are associated with an underlying water aquifer and an overriding gas cap. In many situations, the oil reserve is desired at the surface while the associated fluid is preferred within the reservoir either because they are not valuable at the surface as in the case of produced water or the resources to harness the gas if produced to the surface are not readily available. The reservoir water or gas may also be required for pressure maintenance in production optimization within the reservoir. Whatever may be the intention of prefering to keep the water and/or gas within the reservoir, it is found in practice a difficult goal to achieve due to coning of the unwanted fluid(s). Coning is the tendency of the underlying water in contact with the oil to rise locally towards the producing well due to the greater pressure depletion near the producing well and the viscous drag the production of oil is having on the water-oil interface. The same holds for the gas oil interface in which case the gas projects downwards towards the producing well’s perforation against gravitational force arising from gas-oil density difference. The projection is a result of viscous drag on the fluid interface and the local pressure depletion around the well due to oil production.

The production of either water or free gas with the oil will result in the reduction of the rate of oil production and the ultimate recovery of the oil. The reduction of oil production arises from the simple fact that some portion of the well bore that would be transporting oil will have to transport the unwanted fluid. Reduction in recovery arises from pressure depletion and trapping of oil behind the advancing unwanted fluid front. Ordinarily without coning, the unwanted fluid pushes the oil to the well as production progresses but with coning, the unwanted fluid leaves the oil behind, enters the well and may lead to early abandonment of the well.

The production of water has other damaging effect on hydrocarbon production profitability as it increases the spate and damage of corrosion. Corrosive agents like acid anhydride require the presence of water for ionization and chemical activity on metallic materials used in making the production string and other facilities. Obviously, the handling and disposal cost of produced water increases with the rate of coning. Depending on the prevailing environmental policy and the contaminant present in the produced water, this may constitute a huge cost burden. Gas handling, especially in areas with little market for gas, can become very demanding with gas coning. Treatment, pressurization and storage or re-injection may have dear financial implications. The environmentally-damaging alternative to the gas handling problem common in some countries is gas flaring. The latter constitutes enormous economic and environmental hazard.

As can be appreciated, for technical and economic reasons, it is crucial that coning be minimized or delayed. Thus coning minimization or delay is an important aspect of reservoir and production

management. Numerous studies1,2,3,4 have been conducted to understand the initiation and evolution of coning in order to control or minimize the stated negative consequences.

1.2 STATEMENT OF PROBLEM

Work on coning had generally been pursued along the path of preventing or delaying cone generation and evolution, the time to breakthrough if advancement is not checked and the performance of the well after cone breakthrough. A number of empirical and analytical studies

have been conducted to model and determine these properties5. As will be discussed in detail, in the section on literature review, correlations and models for the determination of critical rate of oil production, time to breakthrough when producing at super-critical rate and the performance of the well after breakthrough have been developed for vertical and horizontal wells.

GET THE COMPLETE PROJECT»

Do you need help? Talk to us right now: (+234) 8111770269, 08111770269 (Call/WhatsApp). Email: projects@blazingprojects.com. Disclaimer: This PDF Material Content is Developed by the copyright owner to Serve as a RESEARCH GUIDE for Students to Conduct Academic Research. You are allowed to use the original PDF Research Material Guide you will receive in the following ways: 1. As a source for additional understanding of the project topic. 2. As a source for ideas for you own academic research work (if properly referenced). 3. For PROPER paraphrasing ( see your school definition of plagiarism and acceptable paraphrase). 4. Direct citing ( if referenced properly). Thank you so much for your respect for the authors copyright.


Purchase Detail

Hello, we’re glad you stopped by, you can download the complete project materials to this project with Abstract, Chapters 1 – 5, References and Appendix (Questionaire, Charts, etc) for N4000 ($15) only, To pay with Paypal, Bitcoin or Ethereum; please click here to chat us up via Whatsapp.
You can also call 08111770269 or +2348059541956 to place an order or use the whatsapp button below to chat us up.
Bank details are stated below.

Bank: UBA
Account No: 1021412898
Account Name: Starnet Innovations Limited

The Blazingprojects Mobile App



Download and install the Blazingprojects Mobile App from Google Play to enjoy over 50,000 project topics and materials from 73 departments, completely offline (no internet needed) with the project topics updated Monthly, click here to install.

0/5 (0 Reviews)

Steven

Read Previous

Ethnopharmacological And Phytochemical Properties Of Some Plants Used In The Management Of Pain – complete project material

Read Next

RELIGION AND DEVELOPMENT IN NIGERIA: A PHILOSOPHICAL ANALYSIS – complete project material

Leave a Reply

Your email address will not be published. Required fields are marked *

Need Help? Chat with us
%d bloggers like this: